The class contains:
- foundations of linear algebra, calculus, probability and statistics
- linear models
- numerical methods for optimization
- central machine learning problems
Recommended literature:
- Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong:
Mathematics for Machine Learning. Cambridge University Press.
2020.
- Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016
- Howard Anton, Chris Rorres, Anton Kaul: Elementary LinearAlgebra. Wiley. 2019.
Useful information (Including code, videos, etc) can be found under this link: https://mml-book.github.io/external.html
- Dozent/in: Alexandra Moringen
- Dozent/in: Dipendra Yadav